Atomistic explanation of shear-induced amorphous band formation in boron carbide.
نویسندگان
چکیده
Boron carbide (B4C) is very hard, but its applications are hindered by stress-induced amorphous band formation. To explain this behavior, we used density function theory (Perdew-Burke-Ernzerhof flavor) to examine the response to shear along 11 plausible slip systems. We found that the (0111)/<1101> slip system has the lowest shear strength (consistent with previous experimental studies) and that this slip leads to a unique plastic deformation before failure in which a boron-carbon bond between neighboring icosahedral clusters breaks to form a carbon lone pair (Lewis base) on the C within the icosahedron. Further shear then leads this Lewis base C to form a new bond with the Lewis acidic B in the middle of a CBC chain. This then initiates destruction of this icosahedron. The result is the amorphous structure observed experimentally. We suggest how this insight could be used to strengthen B4C.
منابع مشابه
Atomistic Origin of Brittle Failure of Boron Carbide from Large-Scale Reactive Dynamics Simulations: Suggestions toward Improved Ductility.
Ceramics are strong, but their low fracture toughness prevents extended engineering applications. In particular, boron carbide (B(4)C), the third hardest material in nature, has not been incorporated into many commercial applications because it exhibits anomalous failure when subjected to hypervelocity impact. To determine the atomistic origin of this brittle failure, we performed large-scale (...
متن کاملNucleation of amorphous shear bands at nanotwins in boron suboxide
The roles of grain boundaries and twin boundaries in mechanical properties are well understood for metals and alloys. However, for covalent solids, their roles in deformation response to applied stress are not established. Here we characterize the nanotwins in boron suboxide (B6O) with twin boundaries along the {0111} planes using both scanning transmission electron microscopy and quantum mecha...
متن کاملShear-induced phase transition of nanocrystalline hexagonal boron nitride to wurtzitic structure at room temperature and lower pressure.
Disordered structures of boron nitride (BN), graphite, boron carbide (BC), and boron carbon nitride (BCN) systems are considered important precursor materials for synthesis of superhard phases in these systems. However, phase transformation of such materials can be achieved only at extreme pressure-temperature conditions, which is irrelevant to industrial applications. Here, the phase transitio...
متن کاملEnhancement of oxidation resistance via a self-healing boron carbide coating on diamond particles
A boron carbide coating was applied to diamond particles by heating the particles in a powder mixture consisting of H3BO3, B and Mg. The composition, bond state and coverage fraction of the boron carbide coating on the diamond particles were investigated. The boron carbide coating prefers to grow on the diamond (100) surface than on the diamond (111) surface. A stoichiometric B4C coating comple...
متن کاملCompression and Associated Properties of Boron Carbide
Our present work presents a direct association of the observed loss of shear strength in boron carbide under plane shock wave compression to amorphization in boron carbide under triaxial stress compression. This evidence is obtained from in-situ measurement of Raman, and infrared vibrational spectra of boron carbide confined in a Diamond Anvil Cell (DAC) under hydrostatic and non-hydrostatic pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 113 9 شماره
صفحات -
تاریخ انتشار 2014